Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aging (Albany NY) ; 16(3): 2026-2046, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38345566

RESUMO

Progeroid disorders are a heterogenous group of rare and complex hereditary syndromes presenting with pleiotropic phenotypes associated with normal aging. Due to the large variation in clinical presentation the diseases pose a diagnostic challenge for clinicians which consequently restricts medical research. To accommodate the challenge, we compiled a list of known progeroid syndromes and calculated the mean prevalence of their associated phenotypes, defining what we term the 'progeria phenome'. The data were used to train a support vector machine that is available at https://www.mitodb.com and able to classify progerias based on phenotypes. Furthermore, this allowed us to investigate the correlation of progeroid syndromes and syndromes with various pathogenesis using hierarchical clustering algorithms and disease networks. We detected that ataxia-telangiectasia like disorder 2, spastic paraplegia 49 and Meier-Gorlin syndrome display strong association to progeroid syndromes, thereby implying that the syndromes are previously unrecognized progerias. In conclusion, our study has provided tools to evaluate the likelihood of a syndrome or patient being progeroid. This is a considerable step forward in our understanding of what constitutes a premature aging disorder and how to diagnose them.


Assuntos
Senilidade Prematura , Síndrome de Cockayne , Progéria , Humanos , Progéria/genética , Progéria/patologia , Senilidade Prematura/genética , Envelhecimento , Fenótipo , Transtornos do Crescimento/complicações
2.
Int Arch Allergy Immunol ; 185(2): 99-110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37989115

RESUMO

INTRODUCTION: Allergic disorders are common diseases marked by the abnormal immune response toward foreign antigens that are not pathogens. Often patients with food allergy also suffer from asthma and eczema. Given the similarities of these diseases and a shortage of effective treatments, developing novel therapeutics against common targets of multiple allergies would offer an efficient and cost-effective treatment for patients. METHODS: We employed the artificial intelligence-driven target discovery platform, PandaOmics, to identify common targets for treating asthma, eczema, and food allergy. Thirty-two case-control comparisons were generated from 15, 11, and 6 transcriptomics datasets related to asthma (558 cases, 315 controls), eczema (441 cases, 371 controls), and food allergy (208 cases, 106 controls), respectively, and allocated into three meta-analyses for target identification. Top-100 high-confidence targets and Top-100 novel targets were prioritized by PandaOmics for each allergic disease. RESULTS: Six common high-confidence targets (i.e., IL4R, IL5, JAK1, JAK2, JAK3, and NR3C1) across all three allergic diseases have approved drugs for treating asthma and eczema. Based on the targets' dysregulated expression profiles and their mechanism of action in allergic diseases, three potential therapeutic targets were proposed. IL5 was selected as a high-confidence target due to its strong involvement in allergies. PTAFR was identified for drug repurposing, while RNF19B was selected as a novel target for therapeutic innovation. Analysis of the dysregulated pathways commonly identified across asthma, eczema, and food allergy revealed the well-characterized disease signature and novel biological processes that may underlie the pathophysiology of allergies. CONCLUSION: Altogether, our study dissects the shared pathophysiology of allergic disorders and reveals the power of artificial intelligence in the exploration of novel therapeutic targets.


Assuntos
Asma , Eczema , Hipersensibilidade Alimentar , Humanos , Inteligência Artificial , Interleucina-5 , Eczema/tratamento farmacológico , Hipersensibilidade Alimentar/tratamento farmacológico , Asma/tratamento farmacológico
3.
Aging (Albany NY) ; 15(8): 2863-2876, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100462

RESUMO

Glioblastoma Multiforme (GBM) is the most aggressive and most common primary malignant brain tumor. The age of GBM patients is considered as one of the disease's negative prognostic factors and the mean age of diagnosis is 62 years. A promising approach to preventing both GBM and aging is to identify new potential therapeutic targets that are associated with both conditions as concurrent drivers. In this work, we present a multi-angled approach of identifying targets, which takes into account not only the disease-related genes but also the ones important in aging. For this purpose, we developed three strategies of target identification using the results of correlation analysis augmented with survival data, differences in expression levels and previously published information of aging-related genes. Several studies have recently validated the robustness and applicability of AI-driven computational methods for target identification in both cancer and aging-related diseases. Therefore, we leveraged the AI predictive power of the PandaOmics TargetID engine in order to rank the resulting target hypotheses and prioritize the most promising therapeutic gene targets. We propose cyclic nucleotide gated channel subunit alpha 3 (CNGA3), glutamate dehydrogenase 1 (GLUD1) and sirtuin 1 (SIRT1) as potential novel dual-purpose therapeutic targets to treat aging and GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Envelhecimento/genética , Inteligência Artificial
4.
Chem Sci ; 14(6): 1443-1452, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36794205

RESUMO

The application of artificial intelligence (AI) has been considered a revolutionary change in drug discovery and development. In 2020, the AlphaFold computer program predicted protein structures for the whole human genome, which has been considered a remarkable breakthrough in both AI applications and structural biology. Despite the varying confidence levels, these predicted structures could still significantly contribute to structure-based drug design of novel targets, especially the ones with no or limited structural information. In this work, we successfully applied AlphaFold to our end-to-end AI-powered drug discovery engines, including a biocomputational platform PandaOmics and a generative chemistry platform Chemistry42. A novel hit molecule against a novel target without an experimental structure was identified, starting from target selection towards hit identification, in a cost- and time-efficient manner. PandaOmics provided the protein of interest for the treatment of hepatocellular carcinoma (HCC) and Chemistry42 generated the molecules based on the structure predicted by AlphaFold, and the selected molecules were synthesized and tested in biological assays. Through this approach, we identified a small molecule hit compound for cyclin-dependent kinase 20 (CDK20) with a binding constant Kd value of 9.2 ± 0.5 µM (n = 3) within 30 days from target selection and after only synthesizing 7 compounds. Based on the available data, a second round of AI-powered compound generation was conducted and through this, a more potent hit molecule, ISM042-2-048, was discovered with an average Kd value of 566.7 ± 256.2 nM (n = 3). Compound ISM042-2-048 also showed good CDK20 inhibitory activity with an IC50 value of 33.4 ± 22.6 nM (n = 3). In addition, ISM042-2-048 demonstrated selective anti-proliferation activity in an HCC cell line with CDK20 overexpression, Huh7, with an IC50 of 208.7 ± 3.3 nM, compared to a counter screen cell line HEK293 (IC50 = 1706.7 ± 670.0 nM). This work is the first demonstration of applying AlphaFold to the hit identification process in drug discovery.

5.
Cell Death Dis ; 13(11): 999, 2022 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-36435816

RESUMO

Multiple cancer types have limited targeted therapeutic options, in part due to incomplete understanding of the molecular processes underlying tumorigenesis and significant intra- and inter-tumor heterogeneity. Identification of novel molecular biomarkers stratifying cancer patients with different survival outcomes may provide new opportunities for target discovery and subsequent development of tailored therapies. Here, we applied the artificial intelligence-driven PandaOmics platform ( https://pandaomics.com/ ) to explore gene expression changes in rare DNA repair-deficient disorders and identify novel cancer targets. Our analysis revealed that CEP135, a scaffolding protein associated with early centriole biogenesis, is commonly downregulated in DNA repair diseases with high cancer predisposition. Further screening of survival data in 33 cancers available at TCGA database identified sarcoma as a cancer type where lower survival was significantly associated with high CEP135 expression. Stratification of cancer patients based on CEP135 expression enabled us to examine therapeutic targets that could be used for the improvement of existing therapies against sarcoma. The latter was based on application of the PandaOmics target-ID algorithm coupled with in vitro studies that revealed polo-like kinase 1 (PLK1) as a potential therapeutic candidate in sarcoma patients with high CEP135 levels and poor survival. While further target validation is required, this study demonstrated the potential of in silico-based studies for a rapid biomarker discovery and target characterization.


Assuntos
Inteligência Artificial , Sarcoma , Humanos , Centríolos/genética , Carcinogênese/metabolismo , Sarcoma/metabolismo , Reparo do DNA/genética
6.
Front Aging Neurosci ; 14: 914017, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35837482

RESUMO

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease with ill-defined pathogenesis, calling for urgent developments of new therapeutic regimens. Herein, we applied PandaOmics, an AI-driven target discovery platform, to analyze the expression profiles of central nervous system (CNS) samples (237 cases; 91 controls) from public datasets, and direct iPSC-derived motor neurons (diMNs) (135 cases; 31 controls) from Answer ALS. Seventeen high-confidence and eleven novel therapeutic targets were identified and will be released onto ALS.AI (http://als.ai/). Among the proposed targets screened in the c9ALS Drosophila model, we verified 8 unreported genes (KCNB2, KCNS3, ADRA2B, NR3C1, P2RY14, PPP3CB, PTPRC, and RARA) whose suppression strongly rescues eye neurodegeneration. Dysregulated pathways identified from CNS and diMN data characterize different stages of disease development. Altogether, our study provides new insights into ALS pathophysiology and demonstrates how AI speeds up the target discovery process, and opens up new opportunities for therapeutic interventions.

7.
J Huntingtons Dis ; 10(3): 405-412, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34397420

RESUMO

HDinHD (Huntington's Disease in High Definition; HDinHD.org) is an open online portal for the HD research community that presents a synthesized view of HD-related scientific data. Here, we present a broad overview of HDinHD and highlight the newly launched HDinHD Explorer tool that enables researchers to discover and explore a wide range of diverse yet interconnected HD-related data. We demonstrate the utility of HDinHD Explorer through data mining of a single collection of newly released in vivo therapeutic intervention study reports alongside previously published reports.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/genética
8.
PLoS Comput Biol ; 17(7): e1009183, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34260589

RESUMO

Coronavirus disease 2019 (COVID-19) is an acute infection of the respiratory tract that emerged in December 2019 in Wuhan, China. It was quickly established that both the symptoms and the disease severity may vary from one case to another and several strains of SARS-CoV-2 have been identified. To gain a better understanding of the wide variety of SARS-CoV-2 strains and their associated symptoms, thousands of SARS-CoV-2 genomes have been sequenced in dozens of countries. In this article, we introduce COVIDomic, a multi-omics online platform designed to facilitate the analysis and interpretation of the large amount of health data collected from patients with COVID-19. The COVIDomic platform provides a comprehensive set of bioinformatic tools for the multi-modal metatranscriptomic data analysis of COVID-19 patients to determine the origin of the coronavirus strain and the expected severity of the disease. An integrative analytical workflow, which includes microbial pathogens community analysis, COVID-19 genetic epidemiology and patient stratification, allows to analyze the presence of the most common microbial organisms, their antibiotic resistance, the severity of the infection and the set of the most probable geographical locations from which the studied strain could have originated. The online platform integrates a user friendly interface which allows easy visualization of the results. We envision this tool will not only have immediate implications for management of the ongoing COVID-19 pandemic, but will also improve our readiness to respond to other infectious outbreaks.


Assuntos
COVID-19/epidemiologia , Computação em Nuvem , Biologia Computacional/métodos , Interface Usuário-Computador , COVID-19/genética , COVID-19/fisiopatologia , COVID-19/virologia , Humanos , Fatores de Risco , SARS-CoV-2/genética , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...